令和6年度シラバス(工業) 学番37 新潟県立長岡工業高等学校

教科(科目)	工業(電子技術)	単位数	2単位	学年(コース)	2学年(電気エネルギーコース)
使用教科書	実教出版『電子技術』				
副教材等	電子技術 演習ノート				

グラデュエーション・ポリシー及びカリキュラム・ポリシー

	N//
	卒業までに次の資質・能力を育成する。
	① 主体的に課題を見つける感覚を養い、自ら学び、解決策を創造する資質・能力と産
 グラデュエーション・ポリシ	業社会で求められる倫理観と規範意識を育成します。
クラアユエーション・ホリン	② 生涯にわたって学び続ける意欲を養い、新たな産業に柔軟に対応する自己指導力を
	育成します。
	③ 国際的視野に立って考える姿勢を養い、地域の発展と豊かな暮らしに貢献するため
	に必要な思考力、発想力を育成します。
	資質・能力を育成するため、このような教育活動を行う。
	・共通教科の学びを強化して、基礎学力の定着を図ります。
	・工業高校で学ぶ基本的な知識や技能を修得し、課題研究や新しい IT 技術について、主
カリキュラム・ポリシー	体的な学び方と実践する場を設定する。
	・将来、国内・国際社会で活躍するために必要なコミュニケーション能力や英語力の向
	上を図り、多様な価値観を持つ仲間との協働的学習を行います。

2 学習目標

電子技術に関する基礎的な知識と技術を習得させ、実際に活用する能力と態度を育てる。

3 指導の重点

図、プリント、練習問題、実際のデータや豊富な資料を活用しながら、具体的に知識を習得できるようにする。

4 評価の観点の趣旨

知識・技能	思考·判断·表現	主体的に学習に取り組む態度	
・電子回路や素子についての原理原 則を理解し、課題解決に必要な知 識と技能を身につけている。	・回路の概要を的確に把握し、分析的総合的に考え、課題解決に向けた思考・判断をすることができる。電子素子やその応用回路について科学的に探求することができ、その過程や結果について的確に表現できる。	・電子素子や回路に関心を持ち、真剣な態度で意欲的に学習に取り組んでいる。	

5 評価方法

	各観点における評価方法は次のとおりです。			
	知識・技術	思考·判断·表現	主体的に学習に取り組む態度	
評価方	以上の観点を踏まえ、 課題の内容・提出状況 小テスト 定期考査 などから、評価します。	以上の観点を踏まえ、 課題の内容・提出状況 小テスト 定期考査 などから、評価します。	以上の観点を踏まえ、 出席状況 授業態度 課題の内容・提出状況 小テスト 定期考査	
法	などから、計画しまり。	などから、計画しより。	などから、評価します。	

内容のまとまりごとに、各観点「A:十分満足できる」、「B:おおむね満足できる」、「C:努力を要する」で評価します。内容のまとまりごとの評価規準は授業で説明します。

6 学習計画

月	単元名	教材名	学習活動(指導内容)	時 間	評価方法
	電子技術の	・原子と電子	・原子の構造,自由電子,正孔,共有結合,キャリヤについて理解させ	20	出席状況
	概要	・半導体	ప 。		授業態度
4	半導体素子	・ダイオード	・半導体を抵抗率によって定義し、シリコンなどの半導体の種類にn形、		課題の内容・提
		・トランジスタ	p形があることを理解させる。		出状況
		・電界効果トラン	・ダイオードの整流作用と特性について理解させる。		小テスト
5		ジスタ	・バイポーラトランジスタの基本的な動作・直流電流増幅率と最大定格		定期考査
		・集積回路	などについて理解させる。		
6		・その他の半導体	・接合形FETとMOS FETの動作原理および特性について理解さ		
O		素子	せる。		
			・ICの分類(素子数・構造・機能・外形)について理解させる。		
7			・定電圧ダイオード、可変容量ダイオード、発光素子と受光素子、サイ		
			リスタなどについて理解させる		
	アナログ回	・増幅回路の基	・トランジスタを用いた基本増幅回路、バイアス回路、静特性と増幅回	3 5	出席状況
8	路	礎	路の動作、増幅度と周波数特性、		授業態度
		・いろいろな増	hパラメータと等価回路などについて理解させる。		課題の内容・提
9		幅回路	· 負帰還增幅回路,FET增幅回路,演算增幅回路,電力增幅回路,高		出状況
		• 発振回路	周波増幅回路などについて理解させる。		小テスト
10		・変調回路と復	・発振とは何か、発振させるための条件、LC発振回路、CR発振回路、		定期考査
11		調回路	水晶発掘回路などについて理解させる。		
11		• 直流電源回路	・変調とは何か、復調とは何か、振幅変調と周波数変調それぞれの変調		
12		+	波形や変復調回路について理解させる。		
12			・変圧回路、整流回路、平滑回路、電圧安定化回路について理解させる。		
1	ディジタル	ディジタル回路	・AND回路,OR回路,NOT回路,NAND回路,NOR回路の機	1 5	出席状況
	回路とパル	• パルス回路	能,論理式,図記号,真理値表などについて理解させる。また,各種		授業態度
2	ス回路	・アナログ/ディ	フリップフロップ,ディジタルIC について理解させる。		課題の内容・提
3		ジタル	・D-A 変換器の原理と種類を理解させるとともに、はしご形 D-A 変換		出状況
		変換器	器では等価回路の考え方を理解させる。		小テスト
			・A-D変換器の原理と種類、基本的な構成、用語などを理解させる。		定期考査

7 課題・提出物等	_
・課題プリント	
8 担当者からの一言	

電子技術で扱う様々な素子の特性・用途などしっかりと理解してほしい。